Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Context. Planetesimal belts are ubiquitous around nearby stars, and their spatial properties hold crucial information for planetesimal and planet formation models. Aims. We present resolved dust observations of 74 planetary systems as part of the REsolved ALMA and SMA Observations of Nearby Stars (REASONS) survey and archival reanalysis. Methods. We uniformly modelled interferometric visibilities for the entire sample to obtain the basic spatial properties of each belt, and combined these with constraints from multi-wavelength photometry. Results. We report key findings from a first exploration of this legacy dataset: (1) Belt dust masses are depleted over time in a radially dependent way, with dust being depleted faster in smaller belts, as predicted by collisional evolution. (2) Most belts are broad discs rather than narrow rings, with much broader fractional widths than rings in protoplanetary discs. We link broad belts to either unresolved substructure or broad planetesimal discs produced if protoplanetary rings migrate. (3) The vertical aspect ratios (h=H/R) of 24 belts indicate orbital inclinations of ~1–20º, implying relative particle velocities of ~0.1–4 km/s, and no clear evolution of heights with system age. This could be explained by early stirring within the belt by large bodies (with sizes of at least ~140 km to the size of the Moon), by inheritance of inclinations from the protoplanetary disc stage, or by a diversity in evolutionary pathways and gravitational stirring mechanisms. We release the REASONS legacy multidimensional sample of millimetre-resolved belts to the community as a valuable tool for follow-up multi-wavelength observations and population modelling studies.more » « lessFree, publicly-accessible full text available January 1, 2026
-
Context. Understanding the formation of substructures in protoplanetary disks is vital for gaining insights into dust growth and the process of planet formation. Studying these substructures in highly embedded Class 0 objects using the Atacama Large Millimeter-submillimeter Array (ALMA), however, poses significant challenges. Nonetheless, it is imperative to do so to unravel the mechanisms and timing behind the formation of these substructures. Aims. In this study, we present high-resolution ALMA data at Bands 6 and 4 of the NGC 1333 IRAS4A Class 0 protobinary system. This system consists of two components, A1 and A2, which are separated by 1.8″ and located in the Perseus molecular cloud at a distance of ~293 pc. Methods. To gain a comprehensive understanding of the dust properties and formation of substructures in the early stages, we conducted a multiwavelength analysis of IRAS4A1. Additionally, we sought to address whether the lack of observed substructures in very young disks could be attributed to factors such as high degrees of disk flaring and large scale heights. To explore this phenomenon, we employed radiative transfer models using RADMC-3D. We employed different approaches and compared the model outcomes with our observational data. This comparison allowed us to gain insights into the challenges in detecting substructures in nascent disks and shed light on the potential influence of the dust scale height on observations of protoplanetary disks. Results. The continuum data revealed the presence of two disks-envelopes around A1 and A2, along with structure connecting the two sources. Furthermore, spectral index measurements indicate lower optical depth within the A2 disk compared to the A1 disk. Our multiwavelength analysis of A1 discovered characteristics such as high dust surface density, substantial dust mass within the disk, and elevated dust temperatures. These findings suggest the presence of large dust grains compared to the ones in the interstellar medium (ISM), greater than 100 microns in size within the region. By employing RADMC-3D, we confirmed that increasing the scale height creates the appearance of an asymmetry in protoplanetary disks. Our findings indicate that a scale height of at least 0.3 (H/R) is necessary to produce this observed asymmetry. Furthermore, while there’s no direct detection of any substructure, our models indicate that some substructure, such as a small gap, must be present. However, reproducing the intensity profile along the major and minor axes necessitates considering other processes that may be occurring within the IRAS4A1 disk. Conclusions. The result implies that disk substructures may be masked or obscured by a large scale height in combination with a high degree of flaring in Class 0 disks.more » « less
-
ABSTRACT Spatially resolved images of debris discs are necessary to determine disc morphological properties and the scattering phase function (SPF) thatantifies the brightness of scattered light as a function of phase angle. Current high-contrast imaging instruments have successfully resolved several dozens of debris discs around other stars, but few studies have investigated trends in the scattered-light, resolved population of debris discs in a uniform and consistent manner. We have combined Karhunen-Loeve Image Projection (KLIP) with radiative-transfer disc forward modelling in order to obtain the highest-quality image reductions and constrain disc morphological properties of eight debris discs imaged by the Gemini Planet Imager at H-band with a consistent and uniformly applied approach. In describing the scattering properties of our models, we assume a common SPF informed from solar system dust scattering measurements and apply it to all systems. We identify a diverse range of dust density properties among the sample, including critical radius, radial width, and vertical width. We also identify radially narrow and vertically extended discs that may have resulted from substellar companion perturbations, along with a tentative positive trend in disc eccentricity with relative disc width. We also find that using a common SPF can achieve reasonable model fits for discs that are axisymmetric and asymmetric when fitting models to each side of the disc independently, suggesting that scattering behaviour from debris discs may be similar to Solar system dust.more » « less
An official website of the United States government
